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Abstract: The development of a shock-accelerated di�use Helium cylindrical
inhomogeneity is investigated using a new numerical method. The new algo-
rithm is a higher-order Godunov implementation of the so-called multi-uid
equations. This system correctly models multiple component mixtures by ac-
counting for di�erential compressibility e�ects. This base integrator is em-
bedded in an implementation of adaptive mesh re�nement (AMR) that allows
e�cient increase in resolution where the computational e�ort is concentrated
where high accuracy, or increased resolution, are required. Qualitative and
quantitative comparison with previous experimental data is excellent. The sim-
ulations show that counter-sign vortex blobs are deposited in the jet core by
baroclinic generation of the curved shock wave as it traverses the jet. This
vorticity deposition occurs over timescales that scale with the shock passage
time (� 10�sec). Three phases of development are identi�ed and characterized.
The �rst is the weak deformation (WD) phase, where there is weak distortion
of the Helium jet due to weak vorticity induced velocity e�ects. The second
phase is the strong deformation (SD) phase where there is large distortion for
the jet and the vortex blobs due to large induced velocity e�ects. The last is a
relaxation/reorganization (RR) phase where the vorticty �eld reorganizes into
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point-like vortex pair.

Key words: Shock-Accelerated di�use interfaces, multi-uid methods, adap-
tive methods

1. Introduction

The evolution of interfaces accelerated by shock waves has been the focus of
investigations for many years. This class of problem has applications in such
disparate �elds as inertial con�nement fusion (ICF) and high-speed combustion.
The literature is rich in studies on the stability of plane interfaces [1], [2], [3], and
[4]. The stability of curved interfaces has recieved similar attention culminating
with the study of [5], where cylindrical or spherical shapes, constructed from
soap bubbles or nitrocellulose membranes, where �lled with either a light or
heavy gas and then accelerated by a shock wave. This last study and the
previous works relied on such membranes to separate gases. A di�erent class
of experiment on acceleration of gaseous cylinders was developed by [7] and [6]
that was free from the e�ect of membranes and used a planar laser induced
uoresence (PLIF) technique allowed for excellent visualization of the ow and
quantitative information regarding mixing.

The present simulations use a high resolution adaptive method designed for
multi-uid ows with initial mixed layers. In this paper, the development of the
Helium mole fraction and vorticity �eld will be examined. Extensive compar-
isons with experimental data have also been completed as well as development
of a new conceptual model describing this ow, but cannont be described here
due to space limitations.

2. Multi-uid System and Numerical Method

The equations used for this study are the so-called multi-uid equations as devel-
oped by [8] and also described in [9]. This system is based on a volume-of-uid
approach, where the fraction of a cell volume occupied by a distinguished uid
is followed during the ow evolution. The basic assumptions in this approach
are that there is pressure equilibrium within a cell, there is a single velocity
vector for both uids and that all changes of state are adiabatic. The equations
are given as

@f�

@t
+r � (uf�) = f�

�̂

��
r � u (2.1)

@

@t
(f���) +r � (uf���) = 0 (2.2)
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+r � (uu�) +rp = 0 (2.3)
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where f�, ��, and E� are the volume fraction, density, and total energy density
of uid component �. The volume fraction is de�ned as f� = ��=� where �
is the volume of the cell and �� is the volume of the cell occupied by uid �.
�� is the sound speed gamma for uid �, and �̂ = 1=

P
� (f

�=��) represents
fraction weighted � for the mixture.

The pressure that appears in the above system is de�ned to be a thermo-
dynamically consistent pressure and de�ned as p =

P
i �̂ (f

ipi=�i), where p� is
the partial pressure of component �. Note that the formulation is su�ciently
general to allow real gas EOS systems described by pressure given as a function
of density and internal energy.

The solution procedure for the system is a higher-order Godunov method
following that of [10] and detailed in [11]. This base integrator for the multi-
uid system is embedded within an implementation of adaptive mesh re�nement
(AMR). This methodology is based on the original work of [12] and later [13].
This is a means for managing a re�ned grid heirarchy composed of logically
rectangular grid patches that allows for e�cient increases in resolution by fo-
cusing the computational accuracy where errors are deemed large, or in regions
where high resolution is required.

3. Problem Setup

The initial conditions for this problem are taken from [7]. The shock wave
Mach number is 1:094 in air. In [14], a Raliegh scattering technique is used to
measure the actual molar concentrations of Helium. It shows the initial pro�le
is Gaussian in shape with a core concentration of approximately 80% Helium.
The initial half radius is set as, rhalf = 0:2, where it is de�ned as the distance
where the Helium mole fraction is half the center value. The density ratio
between air and Helium is �Helium=�air = :138.

The computational domain is 9cm wide by 27cm long with a base grid of
36 cells wide by 108 cells long. There are two levels of re�nement with the �rst
level is a factor of 4 more re�ned than the base grid and the second level is a
factor of 8 more re�ned than the �rst level of re�nement. This gives an e�ective
grid resolution of �x�ne = �y�ne = 0:0078125cm. The shock is initialized in air
a distance of 3rhalf from the jet. All boundaries are inow/outow type.
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4. Results and Discussion

4.1. Flow Visualization

Figure 1 and 2 shows the evolution of the mole fraction of Helium and the
development of the vorticity �eld, respectively. Figure 1(a) shows the initial
conditions and the initial mixed layer. At 88�sec, �gure 1(b), there is a atten-
ing of the jet and a generally weak deformation of its original circular structure.
From here out to about 400�sec, spanned in time by �gures 1(c) through (f),
there is stong deformation of the jet as it is inverted and transformed into the
vortex pair. After 400�sec, from �gure 1(g) on, the ow evolves as a well de�ned
vortex pair. Comparing these results with those given in [7], the agreement is
exceptional.

Based on these observations and for ease and clarity of later exposition, we
de�ne three phases of development. The �rst is the weak deformation phase
(WD) that occurs over short times out to about 90�sec. The second is the
strong deformation phase (SD) that occurs after WD out to about 400�sec.
The last is the relaxation/reorganization (RR) phase that occurs after SD.

In the vorticity time sequence, �gure 2(a) shows the shock, still essentially
planar, leaving positive (in the upper half plane) vorticity behind it. By 66�sec,
�gure 2(b), the shock is well out of the jet core and two counter-sign circular
vortex blobs are seen located in the jet core. During the WD phase, the vor-
tex blobs remain essentially undistorted. This is due to the fact that vorticity
induced velocity e�ects are very weak during the WD phase. Also, the blobs
are deposited in the jet core over a timescale that scales with the shock passage
time (� 10�sec). During the SD phase however, there are large induced velocity
e�ects that distort and stretch the vortex blobs into something like continuous
�nite thickness sheets. The underlying vortical �eld swirls these sheets so that
they are reorganized, at later times, into a vortex pair. Note that during the SD
phase, there is strong counter-sign vorticity appearing also oriented in sheets,
ahead of the distorted blob. Although not shown here, this counter-sign pro-
duction acts to modulate the overall circulation as it relaxes to a near constant
value.

The development of this ow is seen to be determined by the interaction
and evolution of the vortex blobs. Once they are present in the ow, they
at �rst interact weakly (during WD), then interact strongly (during SD) as
they change from blobs, to more point-like vortices (during RR). During the
course of the transformation in the vorticity �eld, the Helium jet undergoes a
similar transformation as shown above. From a modeling point of view, this
ow could be accurately depicted by the development of a vortex blob pair
in an essentially circular helium jet (slightly attened on the upstream side in
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reality). The subsequent development could be predicted by their interaction
and reorganization/relaxation to point vortices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. A sequence of the computed Helium mole fraction evolution. Note that

the shock arrival time at the jet is approximately 40�sec and all times reported are

relative to the start of the calculation. (a) The inital jet, (b) 88�sec, (c) 202�sec, (d)

259�sec, (e) 318�sec, (f) 436�sec, (g) 561�sec, (h) 943�sec, (i) 1182�sec. The shock

moves from left to right. The color bar to the right varies highest to lowest values

from top to bottom.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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